Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Vaccines (Basel) ; 11(5)2023 Apr 25.
Article in English | MEDLINE | ID: covidwho-20236117

ABSTRACT

There is limited information on the kinetics of the humoral response elicited by a fourth dose with a heterologous mRNA1273 booster in patients who previously received a third dose with BNT162b2 and two doses of BBIBP-CorV as the primary regimen. We conducted a prospective cohort study to assess the humoral response using Elecsys® anti-SARS-CoV-2 S (anti-S-RBD) of 452 healthcare workers (HCWs) in a private laboratory in Lima, Peru at 21, 120, 210, and 300 days after a third dose with a BNT162b2 heterologous booster in HCW previously immunized with two doses of BBIBP-CorV, depending on whether or not they received a fourth dose with the mRNA1273 heterologous vaccine and on the history of previous SARS infection -CoV-2. Of the 452 HCWs, 204 (45.13%) were previously infected (PI) with SARS-CoV-2, and 215 (47.57%) received a fourth dose with a heterologous mRNA-1273 booster. A total of 100% of HCWs presented positive anti-S-RBD 300 days after the third dose. In HCWs receiving a fourth dose, GMTs 2.3 and 1.6 times higher than controls were observed 30 and 120 days after the fourth dose. No statistically significant differences in anti-S-RBD titers were observed in those HCWs PI and NPI during the follow-up period. We observed that HCWs who received a fourth dose with the mRNA1273 and those previously infected after the third dose with BNT162b2 (during the Omicron wave) presented higher anti-S-RBD titers (5734 and 3428 U/mL, respectively). Further studies are required to determine whether patients infected after the third dose need a fourth dose.

2.
Trop Med Infect Dis ; 7(5)2022 Apr 24.
Article in English | MEDLINE | ID: covidwho-2259801

ABSTRACT

Insufficient data have been reported about the effect of the inactivated SARS-CoV-2 vaccine (BBIBP-CorV) on the humoral response through time in healthcare workers (HCW). This retrospective cohort studied the information of 252 HCW from a private laboratory, comparing the antibody-mediated response provoked by BBIBP-CorV between HCW previously infected with SARS-CoV-2 (PI) and not previously infected (NPI), employing the Elecsys® anti-SARS-CoV-2 S and the cPass™ SARS-CoV-2 Neutralization Antibody Detection kit at intervals of 21, 90, and 180 days after vaccination. The presence of neutralizing antibodies in HCW 21 days after full vaccination was 100% in PI and 91.60% in NPI. We observed a progressive decrease in antibody levels over time in both groups. Comparing HCW PI with NPI, PI had a 10.9, 14.3, and 8.6-fold higher antibody titer with the Elecsys® anti-SARS-CoV-2 S at 21 (p < 0.001), 90 (p< 0.001) and 180 days (p <0.001) respectively, compared to NPI. Using the percent of signal inhibition (PSI) of the antibody neutralization cPass™, HCW PI showed a level of 1.3, 2.0, and 3.1 times more antibodies, at 21 (p <0.001), 90 (p <0.001), and 180 days (p <0.001) respectively, compared to NPI. We determined a progressive decrease in humoral immunity over time, particularly higher in those NPI.

3.
Vaccines (Basel) ; 11(2)2023 Feb 15.
Article in English | MEDLINE | ID: covidwho-2241603

ABSTRACT

We evaluated neutralizing antibody (NAbs) levels as a protective factor against vaccine breakthrough infection (VBI) in healthcare workers (HCWs) during the third COVID-19 wave in Peru. This retrospective cohort study employed the information from a private laboratory in Lima (Peru) of HCW who received only two BBIBP-CorV vaccines or (additionally) a heterologous booster with BNT162b2. We evaluated the association between the VBI and the levels of NAbs at 21, 90, 180, and 210 days after the BBIBP-CorV second dose. NAbs were calculated with the cPass™ SARS-CoV-2 Neutralization Antibody Detection kit (surrogate virus neutralization test (sVNT)) and the Elecsys® anti-SARS-CoV-2 S Test. Of the 435 HCW evaluated, 31.72% had an infection previous to vaccination, 68.28% received a booster dose, and 23.21% had a VBI during the third wave. The variables associated with a lower risk of VBI were male sex (aRR: 0.43) and those who had (180 days after BBIBP-CorV inoculation) NAbs levels ≥ 60% (aRR: 0.58) and ≥90% (aRR: 0.59) on cPass™, and ≥500 with Elecsys® (aRR: 0.58). HCW whose NAbs persisted at higher levels six months after the BBIBP-CorV showed a lower risk of suffering from a VBI during the third COVID-19 wave.

4.
Vaccines (Basel) ; 10(4)2022 Mar 24.
Article in English | MEDLINE | ID: covidwho-1822453

ABSTRACT

Information on the effects of a heterologous booster in adult patients first vaccinated with the BBIBP-CorV vaccine is limited. This prospective cohort study evaluated the humoral response of 152 healthcare workers (HCWs) from a private laboratory in Lima (Peru) before and after receiving the BNT162b2 vaccine, with a seven-month interval since the BBIBP-CorV doses. We employed the Elecsys® anti-SARS-CoV-2 S and the cPass™ SARS-CoV-2 Neutralization Antibody (NAbs) assays to evaluate anti-S-RBD IgG and NAbs, respectively. Of the 152 HCWs, 79 (51.98%) were previously infected (PI) with SARS-CoV-2 and 73 (48.02%) were not previously infected (NPI). The proportion of HCWs with positive NAbs, seven months after the BBIBP-CorV immunization, was 49.31% in NPI and 92.40% in PI. After the booster, this ratio increased to 100% in both groups. The anti-S-RBD IgG and NAbs in the HCWs' NPI increased by 32.7 and 3.95 times more, respectively. In HCWs' PI, this increment was 5 and 1.42 times more, respectively. There was no statistical association between the history of previous SARS-CoV-2 infection and the titer of anti-S-RBD IgG and NAbs after the booster. The humoral immunity presented a robust increase after receiving the BNT162b2 booster and was more pronounced in NPI.

5.
J Virol ; 95(24): e0139921, 2021 11 23.
Article in English | MEDLINE | ID: covidwho-1691426

ABSTRACT

Targeting host factors is a promising strategy to develop broad-spectrum antiviral drugs. Drugs targeting anti-apoptotic Bcl-2 family proteins that were originally developed as tumor suppressors have been reported to inhibit multiplication of different types of viruses. However, the mechanisms whereby Bcl-2 inhibitors exert their antiviral activity remain poorly understood. In this study, we have investigated the mechanisms by which obatoclax (OLX) and ABT-737 Bcl-2 inhibitors exhibited a potent antiviral activity against the mammarenavirus lymphocytic choriomeningitis virus (LCMV). OLX and ABT-737 potent anti-LCMV activity was not associated with their proapoptotic properties but rather with their ability to induce cell arrest at the G0/G1 phase. OLX- and ABT-737-mediated inhibition of Bcl-2 correlated with reduced expression levels of thymidine kinase 1 (TK1), cyclin A2 (CCNA2), and cyclin B1 (CCNB1) cell cycle regulators. In addition, small interfering RNA (siRNA)-mediated knockdown of TK1, CCNA2, and CCNB1 resulted in reduced levels of LCMV multiplication. The antiviral activity exerted by Bcl-2 inhibitors correlated with reduced levels of viral RNA synthesis at early times of infection. Importantly, ABT-737 exhibited moderate efficacy in a mouse model of LCMV infection, and Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results suggest that Bcl-2 inhibitors, actively being explored as anticancer therapeutics, might be repositioned as broad-spectrum antivirals. IMPORTANCE Antiapoptotic Bcl-2 inhibitors have been shown to exert potent antiviral activities against various types of viruses via mechanisms that are currently poorly understood. This study has revealed that Bcl-2 inhibitors' mediation of cell cycle arrest at the G0/G1 phase, rather than their proapoptotic activity, plays a critical role in blocking mammarenavirus multiplication in cultured cells. In addition, we show that Bcl-2 inhibitor ABT-737 exhibited moderate antimammarenavirus activity in vivo and that Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results suggest that Bcl-2 inhibitors, actively being explored as anticancer therapeutics, might be repositioned as broad-spectrum antivirals.


Subject(s)
Apoptosis , Arenaviridae/drug effects , COVID-19 Drug Treatment , Proto-Oncogene Proteins c-bcl-2/metabolism , A549 Cells , Animals , Antiviral Agents/pharmacology , Apoptosis Regulatory Proteins/pharmacology , Biphenyl Compounds/pharmacology , COVID-19/virology , Cell Cycle , Cell Cycle Checkpoints/drug effects , Cells, Cultured/drug effects , Cells, Cultured/virology , Chlorocebus aethiops , Cyclin A2/biosynthesis , Cyclin B1/biosynthesis , G1 Phase , Humans , Indoles/pharmacology , Mice , Mice, Inbred C57BL , Nitrophenols/pharmacology , Piperazines/pharmacology , Pyrroles/pharmacology , Resting Phase, Cell Cycle , SARS-CoV-2 , Sulfonamides/pharmacology , Thymidine Kinase/biosynthesis , Vero Cells
6.
J Virol ; 95(22): e0112621, 2021 10 27.
Article in English | MEDLINE | ID: covidwho-1398575

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged at the end of 2019 and has been responsible for the still ongoing coronavirus disease 2019 (COVID-19) pandemic. Prophylactic vaccines have been authorized by the U.S. Food and Drug Administration (FDA) for the prevention of COVID-19. Identification of SARS-CoV-2-neutralizing antibodies (NAbs) is important to assess vaccine protection efficacy, including their ability to protect against emerging SARS-CoV-2 variants of concern (VoC). Here, we report the generation and use of a recombinant (r)SARS-CoV-2 USA/WA1/2020 (WA-1) strain expressing Venus and an rSARS-CoV-2 strain expressing mCherry and containing mutations K417N, E484K, and N501Y found in the receptor binding domain (RBD) of the spike (S) glycoprotein of the South African (SA) B.1.351 (beta [ß]) VoC in bifluorescent-based assays to rapidly and accurately identify human monoclonal antibodies (hMAbs) able to neutralize both viral infections in vitro and in vivo. Importantly, our bifluorescent-based system accurately recapitulated findings observed using individual viruses. Moreover, fluorescent-expressing rSARS-CoV-2 strain and the parental wild-type (WT) rSARS-CoV-2 WA-1 strain had similar viral fitness in vitro, as well as similar virulence and pathogenicity in vivo in the K18 human angiotensin-converting enzyme 2 (hACE2) transgenic mouse model of SARS-CoV-2 infection. We demonstrate that these new fluorescent-expressing rSARS-CoV-2 can be used in vitro and in vivo to easily identify hMAbs that simultaneously neutralize different SARS-CoV-2 strains, including VoC, for the rapid assessment of vaccine efficacy or the identification of prophylactic and/or therapeutic broadly NAbs for the treatment of SARS-CoV-2 infection. IMPORTANCE SARS-CoV-2 is responsible of the COVID-19 pandemic that has warped daily routines and socioeconomics. There is still an urgent need for prophylactics and therapeutics to treat SARS-CoV-2 infections. In this study, we demonstrate the feasibility of using bifluorescent-based assays for the rapid identification of hMAbs with neutralizing activity against SARS-CoV-2, including VoC in vitro and in vivo. Importantly, results obtained with these bifluorescent-based assays recapitulate those observed with individual viruses, demonstrating their feasibility to rapidly advance our understanding of vaccine efficacy and to identify broadly protective human NAbs for the therapeutic treatment of SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Neutralization Tests/methods , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/therapeutic use , COVID-19/therapy , COVID-19/virology , Genes, Reporter , Humans , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lung/drug effects , Lung/virology , Mice , Mutation , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Load/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL